194 research outputs found

    Invasive Infections Associated with the Use of Probiotics in Children: A Systematic Review.

    Get PDF
    Although the effectiveness of probiotics has only been proven in specific conditions, their use in children is massively widespread because of their perception as harmless products. Recent evidence raises concerns about probiotics' safety, especially but not only in the paediatric population due to severe opportunistic infections after their use. This review aimed at summarising available case reports on invasive infections related to probiotics' use in children. For this purpose, we assessed three electronic databases to identify papers describing paediatric patients with documented probiotic-derived invasive infections, with no language restrictions. A total of 49 case reports from 1995 to June 2021 were identified. The infections were caused by Lactobacillus spp. (35%), Saccharomyces spp. (29%), Bifidobacterium spp. (31%), Bacillus clausii (4%), and Escherichia coli (2%). Most (80%) patients were younger than 2 years old and sepsis was the most observed condition (69.4%). All the patients except one had at least one condition facilitating the development of invasive infection, with prematurity (55%) and intravenous catheter use (51%) being the most frequent. Three (6%) children died. Given the large use of probiotics, further studies aiming at evaluating the real incidence of probiotic-associated systemic infections are warranted

    Parental Stress, Depression, and Participation in Care Before and During the COVID-19 Pandemic: A Prospective Observational Study in an Italian Neonatal Intensive Care Unit.

    Get PDF
    Background: Recent studies reported, during the COVID-19 pandemic, increased mental distress among the general population and among women around the childbirth period. COVID-19 pandemic may undermine the vulnerable well-being of parents in Neonatal Intensive Care Units (NICUs). Objective: Our study aimed to explore whether parental stress, depression, and participation in care in an Italian NICU changed significantly over three periods: pre-pandemic (T0), low (T1), and high COVID-19 incidence (T2). Methods: Enrolled parents were assessed with the Parental Stressor Scale in the NICU (PSS:NICU), Edinburgh Postnatal Depression Scale (EPDS), and Index of Parental Participation (IPP). Stress was the study primary outcome. A sample of 108 parents, 34 for each time period, was estimated to be adequate to detect a difference in PSS:NICU stress occurrence level score (SOL) of 1.25 points between time periods. To estimate score differences among the three study periods a non-parametric analysis was performed. Correlation among scores was assessed with Spearman rank coefficient. Results: Overall, 152 parents were included in the study (62 in T0, 56 in T1, and 34 in T2). No significant differences in the median PSS:NICU, EPDS, and IPP scores were observed over the three periods, except for a slight increase in the PSS:NICU parental role sub-score in T2 (T0 3.3 [2.3-4.1] vs. T2 3.9 [3.1-4.3]; p = 0.038). In particular, the question regarding the separation from the infant resulted the most stressful aspect during T2 (T0 4.0 [4.0-5.0] vs. T2 5.0 [4.0-5.0], p = 0.008). The correlation between participation and stress scores (r = 0.19-022), and between participation and depression scores (r = 0.27) were weak, while among depression and stress, a moderate positive correlation was found (r = 0.45-0.48). Conclusions: This study suggests that parental stress and depression may be contained during the COVID-19 pandemic, while participation may be ensured

    Aree di studio, siti e strategie di campionamento, difficolt? complessive e sintesi dei principali risultati. Parte B: Laghi

    Get PDF
    After the preliminary actions for the selection of sites, a successive step was reached: the definition of the lakes under investigation within the project INHABIT. In this deliverable we report a brief description of each morphological and morphometric, geological and geomorphological features, with the description of the origin of the lakes, of land use, particularly important to understand and define the insistent pressure of the lake and imposed from the basin, of hydrology, an integral part of the characteristics and the ecological quality of a lake, and of the pressures due to sewage, industry, agriculture and livestock. In some lakes, we also reported the current trophic status and its evolution over time and the actions planned to improve water quality on the basis of the European Directive 2000/60/EC, the Water Framework Directive (WFD). Furthermore, for all studied lakes we also reported the regional maps for showing the watershed and its hydrography, and an aerial photo to help to identify the morphological characteristics of the lake cuvette. On each lake under study, the project involves the collection of biological samples for the four parameters of quality, as indicated by the WFD, and hydro-morphological characteristics, according to the sampling protocols defined at the national level and presently subject of international harmonization. Chapter 1 provides a description of sampling methods and procedures for the four biological parameters investigated: macroinvertebrates, phytoplankton, macrophytes and fish. Each sampling protocol identifies the sampling period, different for each parameter. For example, for the macrobenthos were identified two annual periods (one spring and one fall), for macrophytes the sampling period is during the maximum vegetative growth of plants. Phytoplankton, on the contrary, is sampled periodically several times during the year and, finally, fishes are sampled from spring to autumn. In the description of the protocols and procedures, sampling sites are also identified. The point of investigation vary from element to element. For example, macrophytes and macrobenthos are sampled along transects, i.e. "lines" distributed in a different way to cover the entire lake. On the contrary, phytoplankton is sampled at the deepest point of the lake, and fishes are collected in different areas arranged in different areas of the lake. In this chapter are also included photos of the equipment used for sampling, and of the sampling procedure when relevant. During the collection of macroinvertebrates and phytoplankton samples, water samples for chemical analysis are also collected. Chemical data are used to support and complete the description and the ecological characterization of the lakes. Furthermore, during macroinvertebrates samples, we also collected sediment samples for particle size and chemical analysis, to define the correct placement of transects on the basis of sediment characteristics and to collect basic information needed for the interpretation of data. In addition to the biological parameters, hydro-morphological characteristics of the studied lakes were also investigated, using the Lake Habitat Survey (LHS), a method developed for the English lakes and the being presently standardized at the European level. In this project, LHS will be validated for the Italian lakes. The lakes selected for investigation are 12, including natural and heavily modified waterbodies, and located in two regions: Piedmont and Sardinia. Seven sites are in Piedmont and 5 in Sardinia. The project originally planned 6 sites for each region, including the only natural lake in Sardinia: Lake Baratz. During the first sampling campaign in Sardinia, when macrobenthos was collected, he became aware of the presence of unexploded ordnance on the lake bottom. Working on, and in proximity of the bottom of the lake was excessively dangerous, and it was decided to transfer the activities on the four biological parameters in another lake, Lake Piccolo di Avigliana, a natural lake in Piedmont, lying in a natural park and of particular ecological interest . However, it was decided to keep the sampling of Lake Baratz for the biological parameters which can be sampled without danger, i.e. phytoplankton and macrophytes. In effect, being this lake the only natural lake in Sardinia, it can provide information on natural lakewater communities in the Region, otherwise missing. Selected lakes in Piedmont are the following: Lake Piccolo di Avigliana, in a Regional Park, Lake Candia, in a Provincial Park, Lake Viverone, subject to strong touristic pressure, Lake Sirio, less impacted by tourism, and two heavily modified waterbodies: Morasco, in the basin of River Toce and Serr? in the Gran Paradiso National Park, both built for hydroelectric purposes. In Sardinia, all the 5 fully investigated lakes are heavily modified waterbodies, namely Bidighinzu, Sos Canales, Liscia, Posada and Torrei. The main use for most of these basins is providing drinking water, only for Posada is providing water for agriculture. However, waters from Liscia and Posada are also used for other purposes, irrigation for the former and industry, drinking water and hydroelectric power for the latter. During the sampling campaigns, and particularly during the application of the LHS method which requires to examine the transition between an observation point and the following along the entire lake shore, we made a number of pictures of each lake in order to document the pressures on the coast, such as beaches, docks, artworks, human activities, and to show peculiar coastal and subcoastal habitats, such as sandy areas, reed beds, rocky areas, oxbow lakes, wetlands, riparian vegetation and macrophytes. A small selection of this vast collection of pictures is used in chapters 3 and 4, to show the features of each sampled lake. Sampling activities are not yet finished for all quality parameters, both because of the late selection Lake Piccolo di Avigliana, and because of difficulties due to weather conditions. It is expected to complete all sampling and analyses by Summer 2012. Preliminary data can be found in Chapter 5 for both regions, but only for some parameters and some lakes. In effect, biological analyses require different time and commitment for the different biological elements quality, so that the results the could be obtained faster are reported in this deliverable. A further activity in preparation for the near future is the preparation of a database for the hydromorphological parameters to be used for the calibration and the development of synthetic indices of morphological alteration and habitat quality. This adjustment is necessary because, in an earlier phase of verification of the applicability of the LHS method to the hydromorphological characteristics of the Italian lakes, it emerged the necessity to change some entries in the field card. These changes must also be included in the database associated with the method and in the formulation of the index.Dopo le azioni preliminari per la scelta dei siti si ? giunti, a passi successivi, alla definizione dei laghi oggetto di indagine all\u27interno del progetto INHABIT. In questo deliverable si riporta una sintetica descrizione delle caratteristiche morfologiche e morfometriche di ciascuno, le caratteristiche geologiche e geomorfologiche, con la descrizione della formazione di alcuni laghi, l\u27uso del suolo, particolarmente importante per capire e definire le pressioni insistenti sul lago e gravanti dal bacino, l\u27idrologia, parte integrante delle caratteristiche e della qualit? ecologica di un lago, le pressioni puntuali dovute a scarichi fognari e/o industriali, agricoli e zootecnici. Di alcuni laghi, si ? anche riportato lo stato trofico attuale e la sua evoluzione nel tempo e le azioni regionali intraprese o che si intendono intraprendere per migliorarne la qualit? alla luce delle indicazione della WFD 2000/60. Inoltre, per tutti i laghi studiati si sono riportate anche la cartografia tecnica regionale per l\u27individuazione di ciascun bacino imbrifero e della rete idrografica principale che lo caratterizza, e una foto aerea per meglio identificare le caratteristiche morfologiche della cuvetta lacustre. Su ciascun lago oggetto di studio, il progetto prevede la raccolta di campioni per i quattro parametri biologici di qualit?, cos? come indicati dalla Direttiva Quadro sulle Acque, e delle caratteristiche idromorfologiche, secondo i protocolli di campionamento definiti a livello nazionale e oggetto di intercalibrazione a livello internazionale. Nel capitolo 1 sono riportate una descrizione delle metodiche e delle modalit? di campionamento per i quattro parametri biologici indagati, macroinvertebrati, fitoplancton, macrofite e pesci. Ogni protocollo di campionamento individua il periodo di campionamento, diverso per ciascun parametro, ad esempio per il macrobenthos si sono individuati due periodi annuali (uno primaverile e l\u27altro autunnale), per le macrofite il periodo di campionamento ? quello del massimo sviluppo vegetativo delle piante, mentre il fitoplancton viene raccolto periodicamente diverse volte, durante l\u27anno di campionamento. Infine i pesci sono campionati da primavera ad autunno. Nella descrizione del protocollo e delle modalit? di campionamento, vengono anche individuati i siti di lavoro, ovvero i punti di indagine, che variano molto da elemento a elemento. Ad esempio, le macrofite e il macrobenthos vengono campionati lungo un transetto, quindi su diverse "linee" distribuite in modo diverso fino a coprire tutto il lago. Il fitoplancton viene campionato nel punto pi? profondo del lago, quindi risulta un campionamento "puntuale" e i pesci vengono raccolti in diverse aree disposte in diverse zone del lago, si possono quindi pensare come campioni "areali". Nel suddetto capitolo si sono riportate anche foto della strumentazione necessaria e utilizzata per il campionamento e altre relative ad alcune fasi di raccolta dei campioni. Unitamente alla raccolta della fauna a macroinvertebrati e del fitoplancton vengono anche raccolti campioni di acqua per le analisi chimiche da utilizzare a sostegno e a completamento delle indagini e della caratterizzazione ecologica del lago. Inoltre, sempre unitamente al campionamento dei macroinvertebrati vengono prelevati campioni di sedimento per l\u27analisi granulometrica e chimica, per definire il corretto posizionamento dei transetti e raccogliere informazioni complementari ma basilari, per l\u27interpretazione dei dati. Oltre ai parametri biologici si sono indagate anche le caratteristiche idromorfologiche di ciascun lago scelto, utilizzando il metodo Lake Habitat Survey (LHS), nato per i laghi inglesi e oggetto di standardizzazione a livello europeo, e in questo progetto, oggetto di validazione per i laghi italiani. I laghi su cui effettuare campionamento e indagine sono 12, tra naturali e fortemente modificati, e situati nelle due regioni Piemonte e Sardegna, suddivisi in 7 laghi in Piemonte e 5 in Sardegna. Inizialmente erano previsti 6 laghi ciascuna regione con l\u27inclusione dell\u27unico lago naturale sardo: il Lago Baratz. Dopo la prima campagna di campionamento in Sardegna, quella relativa al macrobenthos, si ? venuti a conoscenza della presenza di ordigni inesplosi sul fondo del lago. Giudicando pericoloso lavorare sui suoi sedimenti ma anche nelle vicinanze del fondo stesso, si ? deciso di continuare l\u27attivit? sui quattro parametri biologici in un altro lago, il Lago Piccolo di Avigliana, lago naturale piemontese, zona di Parco Naturale e di particolare interesse ecologico. Si ? comunque deciso di mantenere il campionamento del Lago Baratz per quei parametri giudicati non pericolosi, fitoplancton e macrofite in quanto, essendo l\u27unico lago naturale sardo riveste una particolare importanza sia per la Regione Sardegna sia per la raccolta di informazioni biologiche nella Regione, altrimenti mancanti. I laghi scelti quindi sono, in Piemonte: il Piccolo di Avigliana, il Candia e il Viverone nell\u27anfiteatro morenico di Ivrea, il primo Parco Provinciale, il secondo meta turistica e oggetto quindi di forti pressioni sia sulle rive che sull\u27intero lago; il Sirio di particolare interesse sia turistico che naturalistico e due corpi idrici fortemente modificati: il Morasco, nel bacino dell\u27Alto Toce e il Serr? all\u27interno del Parco del Gran Paradiso, entrambi creati a scopo idroelettrico. Per quanto riguarda la Sardegna i 5 laghi indagati in modo completo sono tutti corpi idrici fortemente modificati e sono: il Bidighinzu, il Sos Canales, il Liscia, il Posada e il Torrei; l\u27utilizzo prevalente per questi bacini ? quello potabile tranne che per il Posada che ? irriguo. Le acque del Liscia e del Posada sono utilizzate anche per altri scopi, irriguo e industriale il primo, potabile e idroelettrico il secondo. Durante le campagne di campionamento e soprattutto, durante l\u27applicazione del metodo idromorfologico che prevede il passaggio tra un punto di osservazione e l\u27altro, lungo tutto il perimetro sotto costa, si sono effettuate numerose fotografie di ciascun lago, per documentare sia le pressioni sulla costa, come spiagge attrezzate, banchine, artificializzazioni di varia natura, attivit? presenti, che particolari habitat litorali e sub litorali, come zone sabbiose, canneti, zone rocciose, lanche, aree umide, nonch? vegetazione spondale e riparia e macrofite. Del vasto repertorio fotografico raccolto si sono riportate solo alcune delle principali caratteristiche rilevate e sopra descritte, inserite nei capitoli 3 e 4, relativi ai singoli laghi campionati, rispettivamente in Piemonte e in Sardegna. Il lavoro di campionamento non ? ancora finito per tutti i parametri di qualit?, sia a causa della scelta tardiva del Lago Piccolo di Avigliana, sia per difficolt? di varia natura dovute alle condizioni meteorologiche. Si prevede di concludere tali attivit? entro l\u27estate del 2012. Le prime elaborazioni disponibili sono riportate nel capitolo 5 per entrambe le regioni, ma solo per alcuni parametri e per alcuni laghi. La determinazione delle specie presenti non richiede lo stesso tempo e lo stesso impegno per tutti i parametri di qualit? di conseguenza la chiusura dell\u27identificazione dei campioni raccolti sar? effettuata nelle attivit? prossime future. Un\u27altra attivit? in previsione per il prossimo futuro ? quella della taratura del database per i parametri idromorfologici per l\u27elaborazione degli indici sintetici di alterazione morfologica e di qualit? degli habitat. Tale taratura risulta necessaria in quanto, in una precedente fase di verifica dell\u27applicabilit? del metodo LHS alle caratteristiche idromorfologiche dei laghi italiani, ? stato necessario variare qualche voce nella scheda di campo. Tali variazioni dovranno essere inserite anche nel database associato al metodo

    Exosomes from Plasma of Neuroblastoma Patients Contain Doublestranded DNA Reflecting the Mutational Status of Parental Tumor Cells

    Get PDF
    Neuroblastoma (NB) is an aggressive infancy tumor, leading cause of death among preschool age diseases. Here we focused on characterization of exosomal DNA (exo-DNA) isolated from plasma cell-derived exosomes of neuroblastoma patients, and its potential use for detection of somatic mutations present in the parental tumor cells. Exosomes are small extracellular membrane vesicles secreted by most cells, playing an important role in intercellular communications. Using an enzymatic method, we provided evidence for the presence of double-stranded DNA in the NB exosomes. Moreover, by whole exome sequencing, we demonstrated that NB exo-DNA represents the entire exome and that it carries tumor-specific genetic mutations, including those occurring on known oncogenes and tumor suppressor genes in neuroblastoma (ALK, CHD5, SHANK2, PHOX2B, TERT, FGFR1, and BRAF). NB exo-DNA can be useful to identify variants responsible for acquired resistance, such as mutations of ALK, TP53, and RAS/MAPK genes that appear in relapsed patients. The possibility to isolate and to enrich NB derived exosomes from plasma using surface markers, and the quick and easy extraction of exo-DNA, gives this methodology a translational potential in the clinic. Exo-DNA can be an attractive non-invasive biomarker for NB molecular diagnostic, especially when tissue biopsy cannot be easily available

    From Understanding Cellular Function to Novel Drug Discovery: The Role of Planar Patch-Clamp Array Chip Technology

    Get PDF
    All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions – including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, thus limiting their use in modeling physiological function. These chips are therefore not most suitable for studies involving neuronal communication. Multielectrode arrays (MEAs), in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high-resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, approaches to chemical patterning for cell placement, and present physiological data from cultured neuronal cells

    Variabilit? naturale e legata a fattori antropici nei siti lacustri studiati

    Get PDF
    The natural variability of the biotic components, in particular of those showing seasonal cycles, often leads to significant changes of biomass as well as specific composition. This means that the choice of sampling frequency and distribution during the year may be crucial when assessing the ecological quality of a waterbody, starting from the structure of biotic communities. Among the four biological quality elements used to classify the lakes, three of them (phytoplankton, macrophytes and macroinvertebrates) show a marked seasonality and/or a certain degree of spatial variability. This document has the aim to evaluate how the metrics used are sensitive to the natural variability, especially respect to their response to the pressure gradients. The analysis was carried out on data collected during the project and is limited to phytoplankton and macrophytes, because the examination of autumn samples of macroinvertebrates, is still in progress. Regarding phytoplankton, three metrics defined by Italian national legislation (composition indices, chlorophyll and biovolume) were analyzed, comparing the variability due to anthropogenic origin (expressed by the gradient of total phosphorus) with the natural one (seasonal variations on different time scales) and estimating the uncertainty in the classification using different sampling frequencies. In the case of macrophytes, monitoring methods and classification were analyzed respect to their accuracy in assessing if the variability between sites, explained by a different anthropogenic pressure, is actually greater than the variance within the individual lake. In addition, we want to determine if the sampling effort, as established by the monitoring protocols, is adequate to the needs of the classification. Our analysis showed that the variability of phytoplankton metrics reflects the trophic gradient and is more significant than that explained by seasonal fluctuations, demonstrating the robustness of the indicators used. Moreover, the phytoplankton assemblages reveal a high stability in interannual patterns of succession. Conversely, the general formulation of the macrophytic index may need to be redefined to better understand the differences in ecological quality between lakes. Furthermore, as concerns macrophytes, a significant reduction of the sampling effort does not seem to be possible without compromising the quality of classification, while, as regards phytoplankton, it would be acceptable to reduce the number of annual samples from 6 to 4 without compromising the result of the classification, while observing the seasonality, because our analysis suggests that phytoplankton samples concentrated in a single season lead to increased uncertainty in the classification.La variabilit? naturale delle componenti biotiche, in modo particolare di quelle che mostrano cicli su base stagionale, porta a cambiamenti spesso significativi della composizione specifica e della biomassa. Questo significa che la scelta della frequenza di campionamento e la distribuzione dei prelievi nel corso dell\u27anno possono rappresentare dei fattori critici quando si tratta di valutare la qualit? ecologica a partire dalla struttura delle comunit? biotiche. Delle quattro componenti biologiche usate per classificare i laghi, tre (fitoplancton, macrofite e macroinvertebrati) mostrano una spiccata stagionalit? e/o una certa variabilit? spaziale. Il presente documento ? stato redatto con lo scopo di valutare quanto le metriche utilizzate siano sensibili alla variabilit? di origine naturale, soprattutto in relazione alla loro risposta rispetto ai gradienti di pressione. L?analisi ? stata condotta sui dati raccolti nel corso del progetto ed ? limitata al fitoplancton ed alle macrofite, poich? l?esame dei campioni autunnali dei macroinvertebrati ? tuttora in corso. Per quanto riguarda il fitoplancton sono state analizzate tre metriche indicate dalla normativa nazionale (indici di composizione, clorofilla e biovolume), confrontandone la variabilit? di origine antropica (espressa dal gradiente di fosforo totale) con quella naturale (stagionalit? su diverse scale temporali) e stimando l?incertezza nella classificazione con frequenze di prelievo diverse. Nel caso delle macrofite, i metodi di monitoraggio e di classificazione sono stati analizzati rispetto alla loro accuratezza nel valutare se la variabilit? tra ambienti, dovuta alla diversa pressione antropica, sia effettivamente maggiore rispetto alla varianza all?interno del singolo lago. Inoltre, si vuole valutare se lo sforzo di campionamento, previsto dai protocolli di monitoraggio, sia adeguato alle esigenze della classificazione. La nostra analisi ha messo in evidenza che la variabilit? delle metriche fitoplanctoniche rispecchia il gradiente trofico ed ? pi? significativa rispetto a quella spiegata dalle fluttuazioni stagionali, dimostrando la robustezza degli indicatori utilizzati e che le associazioni fitoplanctoniche rilevano un grande stabilit? negli schemi di successione interannuali. Viceversa, la formulazione generale dell?indice macrofitico potrebbe necessitare di una ridefinizione per meglio cogliere le differenze di qualit? ecologica tra i laghi. Inoltre, nel caso delle macrofite, una riduzione significativa dello sforzo di campionamento non pare possibile senza compromettere la qualit? della classificazione, mentre, per quanto riguarda il fitoplancton, sarebbe accettabile ridurre il numero dei prelievi annuali da 6 a 4 senza compromettere il risultato della classificazione, rispettando comunque la stagionalit?, poich? prelievi di fitoplancton concentrati in una sola stagione determinano una maggiore incertezza nella classificazione
    corecore